US009240545B2

a2 United States Patent

Yang et al.

US 9,240,545 B2
Jan. 19, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

DYNAMIC STATE MACHINE

Applicant: Cisco Technology, Inc., San Jose, CA

(US)

Inventors: Fang Jin Yang, Burlingame, CA (US);
Matthias J. Loeser, Pleasanton, CA
(US); Sifang Li, Milpitas, CA (US)

Assignee: Cisco Technology, Inc., San Jose, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 576 days.

Appl. No.: 13/669,248

Filed: Novw. 5,2012

Prior Publication Data

US 2014/0126381 Al May 8, 2014

Int. CL.

HO4L 12726 (2006.01)

HOIL 43/12 (2006.01)

U.S. CL

CPC i HOIL 43/12 (2013.01)

Field of Classification Search
CPC . HO4L 43/12; HO4L 41/0681; GO6K 9/00986
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
6,725,391 B2 4/2004 Swobodaccceeenne 713/500
6,792,563 B1* 9/2004 DesRosieretal. 714/43
7,325,164 B2 1/2008 Swanson etal. 714/30
7,332,929 Bl 2/2008 Normoyleetal. 326/16
7,739,097 B2 6/2010 Sampleetal. 703/19
7,944,234 B2 5/2011 Lunzeretal. 326/38
2003/0126502 ALl* 7/2003 Litt ..cooeovvvrieieiiniee. 714/30
2009/0237110 Al 9/2009 Lunzer et al.

* cited by examiner

Primary Examiner — Un C Cho
Assistant Examiner — Siming Liu
(74) Attorney, Agent, or Firm — Baker Botts L.L..P.

(57) ABSTRACT

In certain embodiments, a method includes receiving, using
one or more processors, a trigger expression. The method
may include processing, using the one or more processors, the
trigger expression, the trigger expression comprising a first
one or more terms comprising a first one or more fields, to
generate a reduced trigger expression. The reduced trigger
expression includes a second one or more terms comprising a
second one or more fields and being logically equivalent to
the trigger expression. The method may include generating,
using the one or more processors, a dynamic state machine by
generating a first data structure comprising each of the second
one or more fields, generating, based on the first data struc-
ture, an expanded trigger expression by adding one or more
additional terms for possible state transitions, and generating,
based on the expanded trigger expression, a second data
structure.

21 Claims, 2 Drawing Sheets

RECEIVE TRIGGER EXPRESSION

|/400

i

PROCESS TRIGGER EXPRESSION TO
GENERATE REDUCED TRIGGER EXPRESSION

| -402

i

SET BITS IN VIRTUAL MASK AND
MATCH REGISTER MODULES BASED
ON REDUCED TRIGGER EXPRESSION

| ~404

1

ELIMINATE REDUNDANT BITS FROM VIRTUAL
MASK AND MATCH REGISTER MODULES

|~ 406

¥

SET BITS IN ACTUAL MASK AND
MATCH REGISTER MODULES

™~ 408

!

GENERATE FIELD LOOKUP TABLE

|\410

)

GENERATE EXPANDED TRIGGER EXPRESSION
BASED ON FIELD LOOKUP TABLE

™~ 412

)

GENERATE STATE LOOKUP TABLE BASED
ON EXPANDED TRIGGER EXPRESSION

- 414

END

U.S. Patent Jan. 19, 2016 Sheet 1 of 2 US 9,240,545 B2
100
Y BOARD
PROCESSING UNIT 106 | |, 104
MEMORY [-~108
DATA
PACKETS |
102 11 \2 c 110 ;4
ood
FMBEDDED
(L0GIC | | MEMORY
101 ANALYZER
COMMUNICATION
LINK
FIG.]
’1/12
ACTUAL MASK AND MATCH ABC +DEF — 208
REGISTER MODULE
2008\ 214~4 MASK REGISTER || STATE MACHINE
MODULE
v 216~ MATCH REGISTER COUNTER | | 202
REGISTERS
REGISTER
MODULES)
2004 200D~ | ACTUAL MASK AND MATCH | | 218
REGISTER MODULE STATE
LOOKUP
ACTUAL MASK AND MATCH | | TABLE
200c-"| REGISTER MODULE 71 o1
> 210 | 7
° TRIGGER
ACTUAL MASK AND MATCH | | | LOGIC UNIT
| 200n—-"| __ REGISTER MODULE
CAPTURE LOGIC
FIG. 2 204
CAPTURE BUFFER N_ogg

U.S. Patent Jan. 19, 2016 Sheet 2 of 2 US 9,240,545 B2

300 22 302 304
§ / /
CURRENT | egsrenoute | MEOT | om0
OUTPUT VECTOR
[306af 0 1110001 TRIG_STATE
306b4 0 1110XXX0 EOP_STATE
306¢¢ 0 T1X0K X0 1
306d4 1 11111 TRIG_STATE
306 306e 4 0 1130001 X0 FOP_STATE
30614 | EOP_STATE 100000 EOP_STATE
30694 [Eop_siate 1000001 TRIG_STATE
306h§ | TRIG_STATE XXO0000X TRGSTATE | royer 3
RECEIVE TRIGGER EXPRESSION |-400

¥
PROCESS TRIGGER EXPRESSION TO
GENERATE REDUCED TRIGGER EXPRESSION |~402

¥
SET BITS IN VIRTUAL MASK AND 404
MATCH REGISTER MODULES BASED -
ON REDUCED TRIGGER EXPRESSION

‘

ELIMINATE REDUNDANT BITS FROM VIRTUAL | - 406
MASK AND MATCH REGISTER MODULES

500 \[RECEIVE DATA PACKETS |

!
SET BITS IN ACTUAL MASK AND
MATCH REGISTER MODULES ™ 408 ANALYZE DATA PACKETS
T 502~ USING BITS IN ACTUAL
MASK AND MATCH
GENERATE FIELD LOOKUP TABLE |_ 410 REGISTER MODULES
! Y
GENERATE EXPANDED TRIGGER PXPRESSION] TRANSITION TG
BASED ON FIELli LOOKUP TABLE 504 TRIG. STATE
GENERATE STATE LOOKUP TABLE BASED !
ON EXPANDED TRIGGER EXPRESSION [~ 414 506 STOP DATA CAPTURE |

FIG. 4 (_END FIG. 5

US 9,240,545 B2

1
DYNAMIC STATE MACHINE

TECHNICAL FIELD

This disclosure relates generally to logic analysis, and
more particularly to a dynamic state machine.

BACKGROUND

Data capture and analysis systems often support debugging
and data “sniffing.” With certain data capture and analysis
systems, users may only specify data capture conditions using
simple logic expressions. One possible solution to this limi-
tation is to incorporate additional hardware to allow for more
complex logic expressions. This solution is costly, however.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present disclo-
sure and its advantages, reference is now made to the follow-
ing description, taken in conjunction with the accompanying
drawings, in which:

FIG. 1 illustrates an example logic analysis system for a
dynamic state machine, according to certain embodiments of
the present disclosure;

FIG. 2 illustrates an example embedded logic analyzer,
according to certain embodiments of the present disclosure;

FIG. 3 illustrates an example state lookup table for evalu-
ating outputs of actual mask and match register modules in
state machine module, according to certain embodiments of
the present disclosure;

FIG. 4 illustrates an example method of generating a
dynamic state machine in a state machine module, according
to certain embodiments of the present disclosure; and

FIG. 5 illustrates an example method for evaluating data
packets using a logic analysis system.

DESCRIPTION OF EXAMPLE EMBODIMENTS

Overview

In certain embodiments, a method includes receiving,
using one or more processors, a trigger expression. The
method may include processing, using the one or more pro-
cessors, the trigger expression, the trigger expression com-
prising a first one or more terms comprising a first one or more
fields, to generate a reduced trigger expression. The reduced
trigger expression includes a second one or more terms com-
prising a second one or more fields and being logically
equivalent to the trigger expression. The method may include
generating, using the one or more processors, a dynamic state
machine by generating a first data structure comprising each
of'the second one or more fields, generating, based on the first
data structure, an expanded trigger expression by adding one
or more additional terms for possible state transitions, and
generating, based on the expanded trigger expression, a sec-
ond data structure.

Example Embodiments

FIG. 1 illustrates an example logic analysis system 100 for
a dynamic state machine, according to certain embodiments
of the present disclosure. In the illustrated example, logic
analysis system 100 includes communication link 101 trans-
ferring data packets 102, board 104, comprising processing
unit 106 with memory 108, and integrated circuit 110 with
embedded logic analyzer 112 and memory 114. Although
logic analysis system 100 is illustrated and primarily
described as including particular numbers and types of com-
ponents arranged in a particular manner, the present disclo-

10

15

20

25

30

35

40

45

50

55

60

65

2

sure contemplates logic analysis system 100 including any
suitable numbers and types of components arranged in any
suitable manner, according to particular needs.

Logic analysis system 100 may analyze logical expres-
sions of varying complexity and implement suitable actions,
where appropriate. In certain embodiments, these logical
expressions may be evaluated to determine which data pack-
ets 102 (and/or items within data packets 102) to capture
and/or analyze.

Communication link 101 may be a transmission path on
which signals are dropped off or picked up at devices attached
to communication link 101. These signals may include, for
example, data packets 102. Communication link 101 facili-
tates wireless or wired communication. Communication link
101 may include one or more computer buses, local area
networks (LANs), radio access networks (RANSs), metropoli-
tan area networks (MANs), wide area networks (WANSs),
mobile networks (e.g., using WiMax (802.16), WiFi (802.11),
3@, 4G, or any other suitable wireless technologies in any
suitable combination), all or a portion of the global computer
network known as the Internet, and/or any other communica-
tion system or systems at one or more locations, any of which
may be any suitable combination of wireless and wired. In a
particular example, communication link 101 comprises a sig-
nal bus.

Data packets 102 may be packets containing data that may
be appropriate for analysis (e.g., based on a user-specified
trigger expression). Data packets 102 may contain any suit-
able type of data, audio, video, or any other suitable data. For
purposes of'this disclosure, and for simplicity, the term “data”
may refer to any suitable combination of text, voice, audio,
video, multimedia, and any other suitable type of data,
according to particular needs. Furthermore, although
described as “packets,” data packets 102 may take any suit-
able form according to particular needs.

Board 104 may be a thin rigid board for containing one or
more electric circuits, one or more printed boards, or any
suitable electrical structure or combination of electrical struc-
tures. Board 104 may include integrated circuit 110 and a
processing unit 106. Although referred to primarily in the
singular, board 104 may include one or more boards.

Integrated circuit 110 may be a field-programmable gate
array (FPGA), an application-specific integrated circuit
(ASIC), a processor, or any other suitable circuit. Integrated
circuit 110 may include embedded logic analyzer 112.
Embedded logic analyzer 112 may be a module for analyzing
data of interest in data packets 102. Integrated circuit 110 and
embedded logic analyzer 112 may be implemented with any
suitable combination of hardware, firmware, and software.

Processing unit 106 may include one or more micropro-
cessors, controllers, or any other suitable computing devices
or resources. Processing unit 106 may work, either alone or
with other components of logic analysis system 100, to pro-
vide a portion or all of the functionality of its associated logic
analysis system 100 described herein. Memory 114 and
memory 108 may take the form of volatile or non-volatile
memory including, without limitation, magnetic media, opti-
cal media, read-access memory (RAM), read-only memory
(ROM), removable media, or any other suitable memory
component.

The components of logic analysis system 100 may be
implemented in any suitable combination of hardware, firm-
ware, and software.

It may be desirable for data packets 102 to be analyzed by
a logic analysis system, such as logic analysis system 100.

US 9,240,545 B2

3

Logic analysis system 100 may analyze data packets 102
from communication link 101 using one or more logic analy-
sis processes.

Logic analysis system 100 may receive, store, generate,
and/or otherwise process one or more data packets 102. The
present disclosure contemplates logic analysis system 100
having any suitable number of data packets 102 and request-
ing that logic analysis system 100 perform a logic analysis of
any suitable number of data packets 102.

Logic analysis system 100 may access data packets 102 in
any suitable manner. Logic analysis system 100 may tap into
communication link 101 passing through integrated circuit
110 to access data packets 102 on communication link 101.
This may be done without interfering with the transfer of data
packets 102 on communication link 101 or any other func-
tions of communication link 101.

In certain embodiments, processing unit 106 receives cri-
teria (e.g., from a user) to analyze data packets 102. These
criteria may be provided as a logical expression. More com-
plex logical expressions may require additional hardware.
For example, analysis of more complex logical expressions
may require more mask and match registers, which are costly
and limited in some systems. Given the increased cost and
space needed for additional hardware, it may be advanta-
geous for logic analysis system 100 to analyze complex logi-
cal expressions using limited hardware. It may also be advan-
tageous for logic analysis system 100 to analyze data packets
102 for numerous clock cycles. In certain embodiments, logic
analysis system 100 may accomplish these goals by using the
received criteria to generate a dynamic state machine in pro-
cessing unit 106 and/or by using logic-minimization tech-
niques and programming embedded logic analyzer 112
accordingly. Using the dynamic state machine, created based
on the received criteria, and logic-minimization techniques,
logic analysis system 100 may analyze data packets 102 on
communication link 101.

FIG. 2 illustrates an example embedded logic analyzer
112, according to certain embodiments of the present disclo-
sure. Embedded logic analyzer 112 provides just one example
of how embedded logic analysis system 100 (or a portion of
logic analysis system 100) may be implemented. Although
this particular example implementation of embedded logic
analyzer 112 is illustrated and described, the present disclo-
sure contemplates implementing embedded logic analyzer
112 in any suitable manner, according to particular needs.
Embedded logic analyzer 112 may be implemented using any
suitable combination of hardware, firmware, and software.

In the illustrated example, embedded logic analyzer 112
includes actual mask and match register modules 200, state
machine module 202, capture logic 204, and capture buffer
206. State machine module 202 may include counter registers
218, state lookup table 210, and trigger logic unit 212, and
may store or otherwise have access to trigger expressions 208.
Incertain embodiments, actual mask and match register mod-
ule 200q includes mask register 214 and match register 216.
The components of embedded logic analyzer 112 may be
implemented with any suitable combination of hardware,
firmware, and software.

Actual mask and match register modules 200 may be mod-
ules containing mask registers 214 and match registers 216.
Mask register 214 may be a register programmed to define a
mask to indicate bits within data packets 102 that embedded
logic analyzer 112 should analyze. Match register 216 may be
a register programmed to indicate which values the masked
bits within data packets 102 should contain in order to satisfy
all or a portion of trigger expression 208. In certain embodi-

10

15

20

25

30

35

40

45

50

55

60

65

4

ments, mask register 214 and match register 216 have a fixed
length such that a register is operable to store a certain number
of bits.

Actual mask and match register module 200a may output a
“1” when the masked bits of data packets 102 are the same as
the corresponding values indicated in match register 216 and
may output a “0” otherwise, the mask being defined by mask
register 214. These meanings associated with “1”” and “0” are
for illustrative purposes only, and depending on the applica-
tion needs, actual mask and match register modules 200 may
have any suitable values. For example, actual mask and match
register module 200a may output a “0” when the masked bits
of data packets 102 are the same as the corresponding values
indicated in match register 216 and may output a “1” other-
wise. The output from each of actual mask and match register
modules 200 may form an output vector and may be sent to
state lookup table 210 in state machine module 202. In par-
ticular, the output from each of actual mask and match regis-
ter modules 200 may form an output vector and may be sent
to state lookup table 210 in state machine module 202.

State machine module 202 may store or otherwise have
access to a trigger expression 208, and may comprise state
lookup table 210, trigger logic unit 212, and counter registers
218 for the implementation of a dynamic state machine.

Trigger expression 208 may be an expression in the form of
a logical equation. Trigger expression 208 is the input or task
specification from a user. Logic analysis system 100 inter-
prets trigger expression 208 and, based on the interpretation,
programs actual mask and match register modules 200 and
state lookup table 210 to perform one or more tasks based on
the interpretation. State machine module 202 may receive
trigger expression 208 from a user or in any other suitable
manner. State machine module 202 may store, interpret, and/
or analyze trigger expression 208. Trigger expression 208
may include one or more trigger terms, which may be logical
expressions of trigger fields linked by one or more operators.
Example operators may include “AND,” “OR,” “NOT,” and
any other suitable operators. For example, trigger expression
208 of “ABC+DEF” has two terms (“ABC” and “DEF”), six
fields (“A,” “B,” “C,” “D,” “E,” and “F”"), and the operators
“AND” (represented by a multiplication operator, i.e. “ABC”
is equivalent to “A*B*C”) and “OR” (represented by the “+”
sign).

State lookup table 210 may be a table used to determine
states in the state machine module 202. For example, state
lookup table 210 may implement a dynamic state machine
that allows logic analysis system 100 to determine the next
state of logic analysis system 100 based on its current state,
output from actual mask and match register modules 200, and
any other suitable parameter such as information in counter
registers 218. Although described as a table, state lookup
table 210 may be any suitable data structure. State lookup
table 210 will be described in greater detail with reference to
FIG. 3.

Trigger logic unit 212 may contain logic that processes
data from state lookup table 210 that is derived from trigger
expression 208. In certain embodiments, trigger logic unit
212 may include one or more registers for indicating whether
logic analysis system 100 has reached the trigger state, the
current status of capture buffer 206, and any other suitable
data.

Counter registers 218 may be one or more registers for
storing a count for the logic analysis system 100. Counter
registers 218 may increment by one or by any other suitable
number in response to a signal from logic analysis system

US 9,240,545 B2

5

100. The count stored in counter registers 218 may be an
additional variable used by logic analysis system 100 in its
analysis of data packets 102.

Capture logic 204 may be logic used to manage the capture
of data packets 102. For example, capture logic 204 may
determine that data packets 102 should be stored in capture
butfer 206.

Capture buffer 206 may be a reserved area in memory for
storing incoming data, such as data packets 102. For example,
capture buffer 206 may store data packets 102 for analysis by
logic analysis system 100.

Logic analysis system 100 may have a current state. Actual
mask and match register modules 200 may generate output.
State machine module 202 may use state lookup table 210 to
determine the next state of logic analysis system 100 based on
the current state, the output from actual mask and match
register modules 200, and any other suitable parameter. In
certain embodiments, the next state may additionally or alter-
natively be determined based on the count of counter registers
218. In certain embodiments, state machine module 202 may
determine to issue a trigger event based on the state of logic
analysis system 100 or may determine to increment counter
registers 218, indicating a new clock cycle. Trigger logic unit
212 may compare the current state to a user-configured trig-
ger state, which may be available in an associated register, and
determine whether to trigger.

A trigger event may indicate that logic analysis system 100
should stop capturing data packets 102 or perform any other
suitable action. A signal indicating a count increment may
indicate that counter registers 218 should increment its count
by one or any other suitable number. An increment in count
may indicate a new clock cycle. Based on the signal and state
machine module 202 reaching the configured trigger state,
trigger logic unit 212 may trigger. Alternatively or in addition,
logic analysis system 100 may trigger based on an external
signal. If trigger logic unit 212 does not trigger, and based on
the programming of state lookup table 210, trigger logic 212
may increment the count of counter registers 218. When the
count of counter registers 218 is incremented, logic analysis
system 100 may capture and analyze more data packets 102
and/or logic analysis system 100 may transition to a new state.
Alternatively, if trigger logic unit 212 does not trigger, and
based on the programming of state lookup table 210, trigger
logic 212 may not increment the count of counter registers
218 and logic analysis system 100 may capture and analyze
more data packets 102 and/or logic analysis system 100 may
transition to a new state. Triggering may result in a signal to
capture logic 204 and capture buffer 206 to stop capturing
packets for analysis. Logic analysis system 100 may stop
capturing packets instantaneously, after a specified period of
time, after a specified number of clock cycles, or in any other
manner.

In certain embodiments, state machine module 202 may
transition from one state to another based on a counter com-
parison flag (indicating whether the count in counter registers
218 match a predetermined value), the current state of state
machine module 202, and output from actual mask and match
register modules 200. Bits used to indicate these elements
may be any of “1,” “0,” and “x.” The information resented by
these values will be discussed in further detail in reference to
FIG. 3. Counter registers 218 may be used to initiate a state
transition but a trigger event may still be based on a compari-
son of the current state to a programmable register.

In certain embodiments, state machine module 202 may
comprise a dynamic state machine for analyzing outputs of
actual mask and match register modules 200. A dynamic state
machine format may provide one or more technical advan-

35

40

45

50

55

60

6

tages. For example, a state machine that is dynamic may use
fewer actual mask and match register modules 200 than might
otherwise be utilized for evaluating trigger expression 208
and data packets 102

Consider a trigger expression 208 of “AB+CD.” This
expression represents “A and B or C and D” and “AB” and
“CD” are each terms in the expression. One actual mask and
match register module 200 may be devoted to each of the
terms, “AB” and “CD.” With more complex expressions, this
would require a greater number of actual mask and match
register modules 200. However, a state machine that is
dynamic may use fewer actual mask and match register mod-
ules 200 than might otherwise be utilized. For example, terms
“AB” and “CD” may be equivalent so that storing bits for both
terms in actual mask and match register modules 200 would
be redundant. Using a dynamic state machine may reduce or
eliminate the storage of redundant bits in actual mask and
match register modules 200, allowing for fewer actual mask
and match register modules 200 to be used, potentially free-
ing one or more actual mask and match register modules 200
for use with other terms and allowing more complex logical
expressions to be evaluated. This may achieve an equally
powerful logic-analyzer implementation with fewer actual
mask and match register modules 200, saving valuable hard-
ware resources and lowering implementation cost and power
draw.

FIG. 3 illustrates an example state lookup table 210 for
evaluating outputs of actual mask and match register modules
200 in state machine module 202, according to certain
embodiments of the present disclosure. In certain embodi-
ments, state lookup table 210 includes one or more of the
following columns: current state 300, mask and match regis-
ter module output vector 302, and next state 304. State lookup
table 210 may also include rows 306 corresponding to differ-
ent scenarios of current state 300 and output from actual mask
and match register modules 200. Rows 306 may be operable
to allow determination of next state 304 based on current state
300 and comparison of mask and match register module
output vector 302 to output from actual mask and match
register modules 200. Rows 306 may alternatively or addi-
tionally be operable to allow determination of next state 304
based on the count of counter registers 218.

Modifications, additions, or omissions may be made to
state lookup table 210. State lookup table 210 may include
more or fewer fields, and may include any data relevant to
states, register output, or other suitable data. State lookup
table 210 may include any suitable amount of data and may be
stored in any suitable type or number of memories. For
example, state lookup table 210 may, alternatively or in addi-
tion, include a counter-increment column and/or a counter-
match column.

Logic analysis system 100 may be at some current state 300
when state lookup table 210 receives output from actual mask
and match register modules 200. In the illustrated example,
states are represented by “0,” “1,” “EOP_STATE,” and
“TRIG_STATE.” These may represent states of “0,” “1,” “end
of packet,” and “trigger,” all examples of possible states of
state machine module 202.

Mask and match register module output vector 302 of state
lookup table 210 may be used to compare output from actual
mask and match register modules 200. Values of mask and
match register module output vector 302 may contain the
value “x” in any position, and in any one or more rows 306 of
state lookup table 210, indicating to ignore the output from
the particular corresponding actual mask and match register
module 200. An “x” in mask and match register module
output vector 302 may indicate that the output from a particu-

US 9,240,545 B2

7

lar actual mask and match register module 200 is not being
evaluated in the corresponding row 306 of state lookup table
210.

Alternatively or in addition, when state lookup table 210 is
programmed, software may recognize an indication of a
“Don’t Care” value, indicated by an “x” and may substitute
the value in mask and match register module output vector
302 witha*“1” in a first row 306 and a “0” in a second row 306.
For example, instead of including a row 306 indicating cur-
rent state 300 of “0,” mask and match register module output
vector 302 of 111011X1, and next state 304 of “TRIG_
TATE,” state lookup table 210 may include two rows, one
with current state 300 of “0,” mask and match register module
output vector 302 of “11101101,” and next state 304 of
“TRIG_STATE” and one with current state 300 of ““0,” mask
and match register module output vector 302 of “11101111,”
and next state 304 of “TRIG_STATE.” Either format of state
lookup table 210 would achieve the same result: new state 304
of “TRIG_STATE” when current state 300 is “0” and output
from actual mask and match register modules 200 is either
“11101101” or “111011117

An output vector from mask and match register modules
200 may be a vector comprising the output from each of mask
and match register modules 200. The output vector may con-
tain values indicating, for each of mask and match register
modules 200, whether the masked bits in data packets 102
matched the corresponding bits of match register 216. For
example, the output vector may contain a value indicating
that, for a particular mask and match register module 200, the
masked bits in data packets 102 matched the corresponding
bits of match register 216. In this example, values in the
output vector indicating a match are represented by “1.” The
output vector may contain a value indicating that, for a par-
ticular mask and match register module 200, the masked bits
in data packets 102 did not match the corresponding bits of
match register 216. In this example, values in the output
vector indicating no match are represented by “0.”

In the illustrated example, state machine module 202 uses
state lookup table 210 to lookup next state 304 based on
current state 300 and comparison of mask and match register
module output vector 302 to output from actual mask and
match register modules 200.

As shown in row 306« in the example, logic analysis sys-
tem 100 may have a current state 300 of 0 when it receives the
output vector formed by output from actual mask and match
registers 200. That vector is then evaluated against the pro-
grammed mask and match register module output vector 302
of “1110xxx1” from state lookup table 210 indicating that the
first, second, third and eighth actual mask and match register
modules 200 must have an output of ““1,” that the fourth actual
mask and match register module 200 must have an output of
“0,” and that the output from the fifth, sixth and seventh actual
mask and match register modules 200 is to be ignored, as
represented by “x”.

In the illustrated example, state machine module 202 may
use state lookup table 210 to look up next state 304. In the
illustrated example, row 306a of state lookup table 210 indi-
cates that, when in current state 300 of “0” and having output
from actual mask and match register modules 200 satisfying
the criteria of mask and match register module output vector
302 of “1110xxx1,” the next state 304 is “TRIG_STATE.” In
the example, logic analysis system 100 may transition to
“TRIG_STATE,” resulting in a trigger signal for logic analy-
sis system 100 to stop capturing data packets 102.

10

15

20

25

30

35

40

45

50

55

60

65

8

In certain embodiments, logic analysis system 100 may
automatically reset to current state 300 of “0.” In at least
certain other embodiments, logic analysis system 100 is reset
by a user after a trigger event.

In certain embodiments, current state 300 and mask and
match register module output vector 302, such as those listed
in rows 3065, 306¢, 306e, and 3061 of state lookup table 210,
may indicate that logic analysis system 100 should transition
to a state other than a trigger state. Examples of these states in
state lookup table 210 include “EOP_STATE” and “1.”

For example, current state 300 of “0” and output from
actual mask and match register modules 200 satisfying the
criteria of mask and match register module output vector 302
of “1110xxx0” would indicate next state 304 of “EOP_
TATE,” as shown in row 3065. In this example, logic analysis
system 100 would transition to a next state of “EOP_ TATE”
and, instead of triggering and resetting, logic analysis system
100 would continue to capture and evaluate data packets 102
until “TRIG_STATE” is reached. This may allow capture
logic 204 to capture multiple qualified data packets 102,
instead of just one qualified data packet 102.

Inthe example, state machine module 202 may use the next
output vector from actual mask and match register modules
200 and the current state of “EOP_STATE” to determine the
next state 304. For example, if the next output of actual mask
and match register modules 200 satisfies the criteria of mask
and match register module output vector 302 of “1xxxxxx0,”
row 3061 of state lookup table 210 indicates that the next state
is “BEOP_STATE” so that logic analysis system 100 remains
in “EOP_STATE” and continues to capture and evaluate data
packets 102. Alternatively, if the next output of actual mask
and match register modules 200 satisfies the criteria of mask
and match register output vector 302 of “lxxxxxxl,” row
306g of state lookup table 210 indicates that the next state is
“TRIG_STATE” so that logic analysis system 100 transitions
to “TRIG_STATE.” Trigger logic 212 may be programmed to
trigger once “TRIG_STATE,” or any other state, is reached.

FIG. 4 illustrates an example method of generating a
dynamic state machine in state machine module 202, accord-
ing to certain embodiments of the present disclosure.

At step 400, logic analysis system 100 receives trigger
expression 208. In certain embodiments, trigger expression
208 received at step 400 may provide conditions indicating
how a computer module should capture one or more data
packets 102 of interest and store one or more captured data
packets 102 for analysis. Logic analysis system 100 may
receive trigger expression 208 using one or more processors.

Processing unit 106 may process trigger expression 208 to
generate a reduced trigger expression at step 402. The
reduced trigger expression may contain a number of terms
less than or equal to the number of terms in trigger expression
208 and be logically equivalent to trigger expression 208. In
certain embodiments, the reduced trigger expression may be
the expression with the least number of terms that is still
logically equivalent to trigger expression 208. In certain
embodiments, the processor may reduce trigger expression
208 using a modified Quine-McCluskey algorithm or any
other suitable Boolean-expression-minimization algorithm.

A reduced trigger expression may provide one or more
technical advantages. For example, reducing redundancies in
trigger expression 208 may resultin logic analysis system 100
being able to use fewer actual mask and match register mod-
ules 200. This may allow for analysis using more complex
expressions and/or lower cost and space requirements.

At step 404 processing unit 106 may set one or more bits in
virtual mask and match register modules, which are stored in
its memory 108, based on the reduced trigger expression. For

US 9,240,545 B2

9

example, logic analysis system 100 may set virtual mask
registers to indicate which bits inside data packets 102 should
be compared and may set virtual match registers to indicate
the values that the bits of interest should be compared to.
Virtual mask and match register modules may be stored in
memory and are a memory representation of actual mask and
match registers modules 200 to be programmed later. This
intermediate step of setting virtual mask and match register
modules allow logic analysis system 100 to temporarily store
initial mask and match register values and optimize the values
before setting them in actual mask and match register mod-
ules 200. The values in bits of virtual mask and match regis-
ters may not be used to compare values of bits in data packets
102 but, instead, may serve to store temporary values before
setting bits in actual mask and match register modules 200, at
step 408.

Processing unit 106 may remove redundant bits from the
virtual mask and match registers at step 406. For example,
processing unit 106 may determine that two of the unmasked
bits in virtual mask and match register modules overlap,
meaning that either of the bits are sufficient to satisfy the
condition of the other so that removing one bit will not change
the outputs of the virtual mask and match register modules.
Based on this, processing unit 106 may remove one or more
bits from virtual mask and match register modules. Removing
redundant bits from the virtual mask and match register
before setting bits in actual mask and match register modules
200 based on the bits in the virtual mask and match register
modules may provide one or more technical advantages. For
example, eliminating redundant bits may result in logic
analysis system 100 being able to use fewer actual mask and
match register modules 200. This may allow for analysis
using more complex expressions and/or lower cost and space
requirements.

Processing unit 106 may set bits in actual mask and match
register modules 200 at step 408. In certain embodiments,
each of actual mask and match register modules 200 stores
match criteria for data in at least one clock cycle. Setting the
plurality of bits in actual mask and match register modules
200 may comprise setting a valid bit in a first actual mask and
match register module 200, setting a start-of-packet bit in a
second actual mask and match register module 200, and set-
ting other bits in one or more other actual mask and match
register modules 200 based on the one or more bits in the one
or more virtual mask and match registers. Logic analysis
system 100 may set mask registers 214 of actual mask and
match register modules 200 to indicate which bits inside data
packets 102 should be compared and may set match registers
216 of actual mask and match register modules 200 to indi-
cate the values that the masked bits should be compared to.
For example, a bit in mask register 214 may be set with a “1”
indicating that the corresponding bit of data packet 102
should be compared to the corresponding bit in the corre-
sponding match register 216. The corresponding match reg-
ister 216 bit may be set with a value to be compared to the
corresponding bit of data packet 102. As another example, a
bit in mask register 214 may be set with a “0” indicating that
the corresponding bit of data packet 102 should not be com-
pared to a corresponding bit in the corresponding match reg-
ister 216.

Logic analysis system 100 may generate a dynamic state
machine in state machine module 202 at steps 410-412. In
certain embodiments, it may be advantageous to create a state
machine that is dynamic. A static state machine may restrict
the possible trigger expressions 208 that a user can enter and
limit the capabilities of logic analysis system 100. A dynamic
state machine may be flexible in accommodating complex

5

10

15

20

25

30

40

45

50

55

60

10

trigger expressions 208 and may expand the functionality of
logic analysis system 100. This flexibility may allow for
fewer actual mask and match register modules 200 than
would be needed for a static state machine, allowing for lower
required cost and space.

At step 410, logic analysis system 100 may generate a field
lookup table based on the reduced trigger expression and
containing fields in the reduced trigger expression. The pur-
pose of the field lookup table is to store all fields in trigger
expression 208. The structure of the field lookup table may be
an array of lists or any suitable data structure. A “line” (e.g.,
a row of the field lookup table) may represent a clock cycle.
Each entry in the array may represent a line, and each list may
contain the fields of that line.

At step 412, logic analysis system 100 may generate, based
on the field lookup table, an expanded trigger expression by
adding one or more additional terms to account for possible
state transitions. In certain embodiments, the general algo-
rithm for doing this is by traversing through trigger expres-
sion 208 and expanding out trigger terms by adding fields and
permutations of terms to account for possible state transi-
tions. Processing unit 106 may add additional terms to help
with state transitions in two steps. In the first step, processing
unit 106 may add terms to account for line transitions. For
example, “A0+C1” is a trigger expression 208 with “A” and
“C” representing fields for comparison and “0” and “1” rep-
resenting the clock cycle (line) associated with the compari-
son. This register expression is used to capture the signal that
has “A” in clock cycle “0” or “C” in clock cycle “1.” As the
example indicates, trigger expression 208 may be considered
a Boolean expression with fields spanning multiple clock
cycles. In the case of this trigger expression 208, processing
unit 106 expands trigger expression 208 to “A0+A'0C1.”
Adding the “A” field in front of “C” accounts for what must
happen in line “0” for that term in order to reach a state for
which the field “C” is compared. To check for a missing line,
processing unit 106 iterates a term and performs a search for
any gaps between the line numbers of fields in the term.
Processing unit 106 inserts fields into a term, sorting the fields
by line number first, and by label second. Therefore, process-
ing unit 106 may easily determine if a line is missing.

Processing unit 106 may iterate through the expanded
expression and iteratively populate state lookup table 210.
Processing unit 106 may assign each term in trigger expres-
sion 208 a number of entries in state look up table 210
depending on how many lines the fields of the term span. As
processing unit 106 iterates through each field in each term,
processing unit 106 may update the entry in state look up table
210 (which indicates the values of the actual mask and match
register modules 200 required for a state transition) according
to whether an equality or non-equality operator is present in
the field. For example, if a field in actual mask and match
register module 200a has an equality operator, processing
unit 106 sets the entry of state lookup table 210 for actual
mask and match register module 200a to “1.”

The purpose of expanding trigger expression 208 may be to
add a set of terms that account for possible state transitions
that may occur based on existing trigger expression 208. By
expanding trigger expression 208, it may become possible for
processing unit 106 to iterate through it only once and create
a dynamic state machine to account for all possible state
transitions. For example, consider trigger expression 208 of
“A0B1+A0D2.” Trigger expression 208 may be expanded to
“A0B1+A0B'1D2.” When processing unit 106 generates the
state machine, processing unit 106 may iterate trigger expres-
sion 208 and determine that, if “A” is matched in line “0,”
processing unit 106 should check line “1” for “B.” If “B” is

US 9,240,545 B2

11

matched, logic analysis system 100 may trigger, and other-
wise, may continue to line “2” and check for “D.”

In certain embodiments, processing unit 106 adds new
entries to the state lookup table 210 if the current line differs
from the next line. Because each field in a trigger term is
sorted by line, processing unit 106 recognizes that, if the
current and next lines differ, a state transition is required.
Every time a new entry is about to be inserted into the state
lookup table 210, processing unit 106 may determine if a state
already exists in the state machine. If the state already exists,
processing unit 106 may create updated values that can be
used for the next state.

Certain embodiments of the present disclosure may pro-
vide one or more technical advantages. For example, certain
embodiments may provide users the ability to capture data
using complex expressions without requiring extensive hard-
ware.

Other technical advantages of the present disclosure will be
readily apparent to one skilled in the art. Moreover, while
specific advantages have been enumerated, various embodi-
ments may include all, some, or none of the enumerated
advantages.

Modifications, additions, or omissions may be made to this
method. This method may include more, fewer, or other steps.
Additionally, the steps may be performed in any suitable
order. Any suitable component of logic analysis system 100
may perform one or more steps of this method.

FIG. 5 illustrates an example method for evaluating data
packets 102 using logic analysis system 100. For example,
logic analysis system 100 may receive instructions to stop
evaluating data packets 102 if the data in data packets 102
satisfies a condition specified in trigger expression 208. Logic
analysis system 100 may monitor the data of interest in
received data packets 102 and, if logic analysis system 100
determines that the data of interest in data packets 102 satis-
fies the specified condition, logic analysis system 100 may
send a signal for logic analysis system 100 to stop evaluating
data packets 102.

In certain embodiments, embedded logic analyzer 112
receives one or more data packets 102 at step 500. For
example, embedded logic analyzer 112 may receive data
packets 102 from communication link 101. In certain
embodiments, capture logic 204 may determine which data
packets 102 on communication link 101 to capture for analy-
sis. Capture buffer 206 may store data packets 102 for analy-
sis.

Embedded logic analyzer 112 may analyze data packets
102 using bits in actual mask and match register modules 200
at step 502. For example, mask registers 214 may indicate
which of the bits in data packets 102 logic analysis system
100 should analyze. Match registers 216 may indicate what
the values of the bits of interest should be in order to indicate
a match. Based on the bits of interest indicated by the bits
masked by mask register 214 and their comparison with bits
in match registers 216, each of actual mask and match register
modules 200 may generate an output of “1” or “0” and the
output from all of actual mask and match register modules
200 may be combined to form an output vector.

At step 504, embedded logic analyzer 112 may transition
states based on the analysis of data packets 102, to arrive at the
“TRIG_STATE.” For example, embedded logic analyzer 112
may be at a current state 300 of “0” when actual mask and
match register modules 200 outputa vectorof “11101111.” In
the illustrated example, row 306a of state lookup table 210
indicates that, based on this current state 300 and output from
actual mask and match register modules 200, which satisfies
the conditions of mask and match register module output

10

15

20

25

30

35

40

45

50

55

60

65

12

vector 302 of “1110xxx1,” next state 304 is “TRIG_STATE,”
resulting in embedded logic analyzer 112 transitioning to
“TRIG_STATE.” This example is for illustrative purposes
only and embedded logic analyzer 112 may arrive at “TRIG_
TATE” based on any suitable conditions and may transition to
and from any suitable combination of states before arriving at
“TRIG_STATE”

In certain embodiments, embedded logic analyzer 112 may
stop data capture in response to arriving at “TRIG_STATE” at
step 506. For example, trigger logic unit 212, in response to
embedded logic analyzer 112 arriving at “TRIG_STATE,”
may send a signal to capture logic 204 indicating that logic
analysis system 100 should cease capturing data packets 102.
In response, capture logic 204 may stop storing data packets
102 on capture buffer 206.

Modifications, additions, or omissions may be made to this
method. This method may include more, fewer, or other steps.
Additionally, the steps may be performed in any suitable
order. Any suitable component of logic analysis system 100
may perform one or more steps of this method.

Although the present disclosure has been described in sev-
eral embodiments, a myriad of changes and modifications
may be suggested to one skilled in the art, and it is intended
that the present disclosure encompass such changes and
modifications as fall within the scope of the present appended
claims.

What is claimed is:

1. A method, comprising:

receiving, using one or more processors, a trigger expres-

sion;

processing, using the one or more processors, the trigger

expression, the trigger expression comprising a first one
or more terms comprising a first one or more fields, to
generate a reduced trigger expression, the reduced trig-
ger expression comprising a second one or more terms
comprising a second one or more fields and being logi-
cally equivalent to the trigger expression;

generating, using the one or more processors, a dynamic

state machine by performing operations comprising:

generating a first data structure comprising each of the
second one or more fields;

generating, based on the first data structure, an expanded
trigger expression by adding one or more additional
terms for possible state transitions; and

generating, based on the expanded trigger expression, a
second data structure;

receiving one or more first data packets;

analyzing, using one or more of a plurality of bits in a

plurality of actual mask and match register modules, the
one or more first data packets;

determining, based on analyzing the one or more first data

packets using the second data structure, a trigger state;
and

in response to determining the trigger state, taking an

action with respect to capturing data packets.

2. The method of claim 1, further comprising:

setting, based on the reduced trigger expression, one or

more bits in one or more virtual mask and match register
modules;

modifying the one or more bits in the one or more virtual

mask and match register modules by eliminating one or
more redundant bits to generate one or more modified
bits; and

setting the plurality of bits in the plurality of actual mask

and match register modules.

3. The method of claim 2, wherein setting the plurality of
bits in the plurality of actual mask and match register modules

US 9,240,545 B2

13

comprises setting one or more bits in one or more mask and
match registers based on the one or more modified bits.

4. The method of claim 1, wherein processing the trigger
expression to generate the reduced trigger expression com-
prises processing the trigger expression using a modified
Quine-McCluskey algorithm.

5. The method of claim 1, wherein the trigger expression
provides conditions indicating how a computer module
should capture one or more data packets of interest and store
one or more captured data packets for analysis.

6. The method of claim 1, wherein each of the plurality of
actual mask and match register modules is operable to store
match criteria for data packets in at least one clock cycle.

7. The method of claim 1, wherein the second data structure
comprises one or more of the following:

a current state column;

a mask and match register module output vector column;

a next state column, the next state column comprising one

or more next states, the one or more next states compris-
ing a trigger state;

a counter-increment column; and

a counter-match column.

8. The method of claim 1,

wherein taking an action with respect to capturing data

packets comprises stopping capture of data packets.

9. The method of claim 1, further comprising:

receiving one or more second data packets;

analyzing, using one or more of the plurality of bits in the

plurality of actual mask and match register modules, the
one or more second data packets;

determining, based on analyzing the one or more second

data packets using the second data structure, a state other
than the trigger state; and

in response to determining the state other than the trigger

state, continuing to capture data packets.

10. The method of claim 1, wherein the reduced trigger
expression is the expression with the least number of terms
that is still logically equivalent to the trigger expression.

11. A system comprising

one or more actual mask and mask register modules, the

one or more actual mask and match register modules
comprising one or more mask registers and one or more
match registers; and

a processor operable to:

receive a trigger expression;
process the trigger expression, the trigger expression
comprising a first one or more terms comprising a first
one or more fields, to generate a reduced trigger
expression, the reduced trigger expression compris-
ing a second one or more terms comprising a second
one or more fields and being logically equivalent to
the trigger expression; and
generate a dynamic state machine by performing opera-
tions comprising:
generating a first data structure comprising each of the
second one or more fields;
generating, based on the first data structure, an
expanded trigger expression by adding one or more
additional terms for possible state transitions; and
generating, based on the expanded trigger expression,
a second data structure;
receive one or more first data packets;
analyze, using one or more of a plurality of bits in the one
or more actual mask and match register modules the
one or more first data packets;

15

20

25

30

35

40

45

50

55

60

65

14

determine, based on analyzing the one or more first data
packets using the second data structure, a trigger state;
and

in response to determining the trigger state, taking an
action with respect to capturing data packets.

12. The system of claim 11, the processor being further
operable to:

set, based on the reduced trigger expression, one or more

bits in one or more virtual mask and match register
modules;

modify the one or more bits in the one or more virtual mask

and match register modules by eliminating one or more
redundant bits to generate one or more modified bits;
and

set, based on the one or more modified bits, the plurality of

bits in the one or more actual mask and match register
modules.

13. The system of claim 12, wherein setting the plurality of
bits in the one or more actual mask and match register mod-
ules comprises setting one or more bits in the one or more
mask and match registers based on the one or more modified
bits.

14. The system of claim 11, wherein processing the trigger
expression to generate the reduced trigger expression com-
prises processing the trigger expression using a modified
Quine-McCluskey algorithm.

15. The system of claim 11, wherein the trigger expression
provides conditions indicating how a computer module
should capture one or more data packets of interest and store
one or more captured data packets for analysis.

16. The system of claim 11, wherein each of the one or
more actual mask and match register modules is operable to
store match criteria for data packets in at least one clock cycle.

17. The system of claim 11, wherein the second data struc-
ture comprises one or more of the following:

a current state column;

a mask and match register module output vector column;

a next state column, the next state column comprising one

or more next states, the one or more next states compris-
ing a trigger state;

a counter-increment column; and

a counter-match column.

18. The system of claim 11, wherein

taking an action with respect to capturing data packets

comprises stopping capture of data packets.

19. The system of claim 11, wherein the processor is fur-
ther operable to:

receive one or more second data packets;

analyze, using one or more of the plurality of bits in the one

or more actual mask and match register modules, the one
or more second data packets;

determine, based on analyzing the one or more second data

packets using the second data structure, a state other than
the trigger state; and

in response to determining the state other than the trigger

state, continue to capture data packets.

20. The system of claim 11, wherein the reduced trigger
expression is the expression with the least number of terms
that is still logically equivalent to the trigger expression.

21. A non-transitory computer-readable medium compris-
ing logic that, when executed by one or more processors, is
operable to perform operations comprising:

receiving a trigger expression;

processing the trigger expression, the trigger expression

comprising a first one or more terms comprising a first
one or more fields, to generate a reduced trigger expres-
sion, the reduced trigger expression comprising a second

US 9,240,545 B2

15

one or more terms comprising a second one or more
fields and being logically equivalent to the trigger
expression; and
generating a dynamic state machine by performing opera-
tions comprising:
generating a first data structure comprising each of the
second one or more fields;
generating, based on the first data structure, an expanded
trigger expression by adding one or more additional
terms for possible state transitions; and
generating, based on the expanded trigger expression, a
second data structure;
receive one or more first data packets;
analyze, using one or more of a plurality of bits in one or
more actual mask and match register modules, the one or
more first data packets;
determine, based on analyzing the one or more first data
packets using the second data structure, a trigger state;
and
in response to determining the trigger state, taking an
action with respect to capturing data packets.

#* #* #* #* #*

10

15

20

16

